https://doi.org/10.1039/c9en00567f ·
Journal: Environmental Science: Nano, 2019, №10, p.3158-3169
Publisher: Royal Society of Chemistry (RSC)
Authors:
- Qiaoran Liu
- Xiaoyao Tan
- Shaobin Wang
- Fang Ma
- Hussin Znad
- Zhangfeng Shen
- Lihong Liu
- Shaomin Liu
Abstract
Z-Scheme CdS@Ti<sub>3</sub>C<sub>2</sub>@TiO<sub>2</sub> nanohybrids using MXene Ti<sub>3</sub>C<sub>2</sub> as a non-metal charge carrier mediator exhibited superior performance in sulfachloropyridazine degradation.
List of references
- Low, Chem. Commun., № 50, с. 10768
https://doi.org/10.1039/C4CC02553A - Naguib, Adv. Mater., № 23, с. 4248
https://doi.org/10.1002/adma.201102306 - Zhu, Coord. Chem. Rev., № 352, с. 306
https://doi.org/10.1016/j.ccr.2017.09.012 - Wong, ACS Appl. Mater. Interfaces, № 10, с. 39879
https://doi.org/10.1021/acsami.8b14325 - Sun, J. Mater. Chem. A, № 6, с. 9124
https://doi.org/10.1039/C8TA02706D - Liu, J. Mater. Chem. A, № 6, с. 4102
https://doi.org/10.1039/C7TA09350K - Zhang, Ceram. Int., № 44, с. 19958
https://doi.org/10.1016/j.ceramint.2018.07.262 - Handoko, Nanoscale Horiz., № 4, с. 809
https://doi.org/10.1039/C9NH00100J - Tada, Nat. Mater., № 5, с. 782
https://doi.org/10.1038/nmat1734 - Ou, Appl. Catal., B, № 221, с. 97
https://doi.org/10.1016/j.apcatb.2017.09.005 - Li, ACS Appl. Mater. Interfaces, № 8, с. 2111
https://doi.org/10.1021/acsami.5b10613 - Zheng, Chem. Commun., № 51, с. 17467
https://doi.org/10.1039/C5CC07867A - Jin, Small, № 39, с. 5262
https://doi.org/10.1002/smll.201500926 - Yuan, J. Mater. Chem. A, № 5, с. 21205
https://doi.org/10.1039/C7TA06644A - Kuai, RSC Adv., № 5, с. 88409
https://doi.org/10.1039/C5RA14374H - Zhu, J. Electrochem. Soc., № 163, с. 785
https://doi.org/10.1149/2.0981605jes - Wang, ChemSusChem, № 9, с. 1490
https://doi.org/10.1002/cssc.201600165 - Low, J. Catal., № 361, с. 255
https://doi.org/10.1016/j.jcat.2018.03.009 - Li, Nanoscale Adv., № 1, с. 1812
https://doi.org/10.1039/C9NA00023B - Zhang, Ceram. Int., № 43, с. 11065
https://doi.org/10.1016/j.ceramint.2017.05.151 - Yuan, Adv. Mater. Interfaces, № 4, с. 1700577
https://doi.org/10.1002/admi.201700577 - Chen, Appl. Surf. Sci., № 4, с. 7311
- Lukatskaya, Science, № 341, с. 1502
https://doi.org/10.1126/science.1241488 - Ran, Nat. Commun., № 8, с. 13907
https://doi.org/10.1038/ncomms13907 - Zheng, Small, № 12, с. 527
- Peng, Nano Energy, № 53, с. 97
https://doi.org/10.1016/j.nanoen.2018.08.040 - Zhang, RSC Adv., № 8, с. 19895
https://doi.org/10.1039/C8RA03077D - Fard, Chem. Eng. Sci., № 317, с. 331
https://doi.org/10.1016/j.cej.2017.02.090 - Mu, Chem. Eng. Sci., № 358, с. 283
https://doi.org/10.1016/j.cej.2018.10.010 - Zheng, Mater. Chem. Phys., № 206, с. 270
https://doi.org/10.1016/j.matchemphys.2018.09.008 - Liu, Sci. Rep., № 7, с. 12437
https://doi.org/10.1038/s41598-017-12805-6 - Xie, Appl. Catal., B, № 237, с. 43
https://doi.org/10.1016/j.apcatb.2018.05.070 - Ai, Appl. Catal., B, № 242, с. 202
https://doi.org/10.1016/j.apcatb.2018.09.101 - Khazaei, Adv. Funct. Mater., № 23, с. 2185
https://doi.org/10.1002/adfm.201202502 - Kong, Langmuir, № 24, с. 5324
https://doi.org/10.1021/la703258e - Wang, Appl. Catal., B, № 254, с. 98
https://doi.org/10.1016/j.apcatb.2019.04.044 - Li, Phys. Chem. Chem. Phys., № 16, с. 25684
https://doi.org/10.1039/C4CP01111B - Le Formal, J. Phys. Chem. C, № 116, с. 26707
https://doi.org/10.1021/jp308591k - Tamirat, Phys. Chem. Chem. Phys., № 19, с. 20881
https://doi.org/10.1039/C7CP02890C - He, Environ. Sci. Technol., № 49, с. 649
https://doi.org/10.1021/es5046309 - Shahzad, Chem. Eng. Sci., № 349, с. 748
https://doi.org/10.1016/j.cej.2018.05.148 - Deng, Chem. Eng. Sci., № 361, с. 1451
https://doi.org/10.1016/j.cej.2018.10.176 - Zhou, Catal. Sci. Technol., № 8, с. 2402
https://doi.org/10.1039/C8CY00182K - Ni, Catal. Sci. Technol., № 6, с. 6448
https://doi.org/10.1039/C6CY00580B - Chu, J. Hazard. Mater., № 356, с. 53
https://doi.org/10.1016/j.jhazmat.2018.05.044 - Zhang, Chem. Sci., № 3, с. 2812
https://doi.org/10.1039/c2sc20603j - Song, Chem. Commun., № 54, с. 4919
https://doi.org/10.1039/C8CC00946E
Publications that cite this publication
MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications
Wengao Zeng, Xiaoyuan Ye, Yuchen Dong, Yuqi Zhang, Chengzhuo Sun, Tuo Zhang, Xiangjiu Guan, Liejin Guo
https://doi.org/10.1016/j.ccr.2024.215753
2024, Coordination Chemistry Reviews, p.215753
Scopus
WoS
Crossref citations:0
Ag3PO4/MXene-TiO2-T: As an all-solid Z-type photocatalytic system with stable and enhanced photocatalytic performance
Qiuyue Tan, Zongxue Yu, Runxuan Long, Niandan He, Yuwen Huang, Yucheng Liu
https://doi.org/10.1016/j.optmat.2022.112685
2022, Optical Materials, p.112685
Scopus
WoS
Crossref citations:10
Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes
Jingkai Lin, Wenjie Tian, Huayang Zhang, Xiaoguang Duan, Hongqi Sun, Hao Wang, Yanfen Fang, Yingping Huang, Shaobin Wang
https://doi.org/10.1016/j.jhazmat.2022.128866 ·
2022, Journal of Hazardous Materials, p.128866
Scopus
WoS
Crossref citations:34
Advances in 2D MXenes-based materials for water purification and disinfection: Synthesis approaches and photocatalytic mechanistic pathways
Baishali Bhattacharjee, Md Ahmaruzzaman, Ridha Djellabi, Ehiaghe Elimian, Sami Rtimi
https://doi.org/10.1016/j.jenvman.2022.116387 ·
2022, Journal of Environmental Management, p.116387
Scopus
WoS
Crossref citations:1
Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations
Lijarani Biswal, Ritik Mohanty, Susanginee Nayak, Kulamani Parida
https://doi.org/10.1016/j.jece.2022.107211
2022, Journal of Environmental Chemical Engineering, №2, p.107211
Scopus
WoS
Crossref citations:54
MXene as emerging material for photocatalytic degradation of environmental pollutants
Nadeem Hussain Solangi, Rama Rao Karri, Shaukat Ali Mazari, Nabisab Mujawar Mubarak, Abdul Sattar Jatoi, Guilherme Malafaia, Abul Kalam Azad
https://doi.org/10.1016/j.ccr.2022.214965
2023, Coordination Chemistry Reviews, p.214965
Scopus
WoS
Crossref citations:42
Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications
Syed Irfan, Sadaf Bashir Khan, Muhammad Aizaz Ud Din, Fan Dong, Deliang Chen
https://doi.org/10.3390/molecules28062495 ·
2023, Molecules, №6, p.2495
Scopus
WoS
Crossref citations:1
Design and synthesis of TiO2/Ti3C2 composites for highly efficient photocatalytic removal of acetaminophen: The relationships between synthesis parameters, physicochemical properties, and photocatalytic activity
Anna Grzegórska, Agnieszka Gajewicz-Skretna, Grzegorz Trykowski, Karol Sikora, Anna Zielińska-Jurek
https://doi.org/10.1016/j.cattod.2022.12.011 ·
2023, Catalysis Today, p.113980
Scopus
WoS
Crossref citations:1
2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications
Huimeng Feng, Wei Wang, Mutian Zhang, Shidong Zhu, Qi Wang, Jianguo Liu, Shougang Chen
https://doi.org/10.1016/j.apcatb.2020.118609 ·
2020, Applied Catalysis B: Environmental, p.118609
Scopus
WoS
Crossref citations:19
Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion
Shabnam Sambyal, Rohit Sharma, Parteek Mandyal, Salar Balou, Peyman Gholami, Baizeng Fang, Pooja Shandilya, Aashish Priye
https://doi.org/10.1016/j.jece.2023.109517
2023, Journal of Environmental Chemical Engineering, №2, p.109517
Scopus
WoS
Crossref citations:12
Find all citations of the publication